
Acnet Setting Forwarding
Implementation notes

Mon, Mar 1, 2004

Most other front-ends must save Acnet device setting values to the Acnet database,
because they have no local non-volatile memory in their hardware configuration. The
Linac-IRM-PowerPC front-ends do have such nonvolatile memory in which setting
values are saved. But the support for DABBEL-triggered downloading sometimes causes
setting values from the Acnet database to get downloaded as well, even if the DABBEL
change was only to modify a device and not create a new one. (This can occur when
modifying the SSDR.) It has therefore been decided to forward settings to the Acnet
database, even though the values will not normally be used, except for the DABBEL-
related cases just described. This note describes some facets of the implementation in
the system code.

The ACReq task is the path used for processing all Acnet protocol messages, each of
which shares the same message queue on which ACReq waits. (Note that this ensures
that a SETDAT message followed by a RETDAT message will always be executed in the
original order.) The support for this new forwarding scheme needs another Acnet task
name. The task name it targets is called DBM... (in RAD-50 notation). So we choose to
use the same task name, even though only reply messages from forwarding requests
sent to the target CDBS node will be received, not request messages.

The protocol for these forwarded messages borrows heavily from the corresponding
SETDAT message. A 3-word header is followed by an array of setting forward (SF)
packets. The header includes a type code that is fixed at 0x0001, the number of bytes
expected in an ensuing reply message, and the number of SF packets in the array. Each
SF packet includes a function code of 0x0300 followed by the corresponding SETDAT
setting packet, but without the 8-byte SSDN. This means that the SF packet size is 10
bytes plus the size of the setting data.

The important need for forwarding settings to the Acnet database is for ordinary 2 or 4
byte setting values as well as for 20-byte alarm blocks. Accordingly, we limit this SF
implementation to those SETDAT settings that include 20 bytes of data or less.

Setting forwarding logic flow
A SETDAT message can include a number of device setting packets, not all

targeting the receiving node. A decision is made upon review of the target node
numbers in all the setting packets on whether server-style logic is to be used, in which
the entire SETDAT message is targeted to the single other node indicated for all the
packets, or if more than one node is indicated, it is targeted to a multicast address to
reach all the targeted nodes. The new forwarding logic applies only to SETDAT messages
received that are not to be given server-style support.

In the loop that processes each local setting packet in a SETDAT message, a check is
made for the setting data size being reasonable, as referred to above. If it is, then a SF
packet is saved in a buffer. Then the setting action is performed, and if there are no
errors detected, then the setting packet just built is entered into the SF message. Finally,
after processing all of the device settings within the SETDAT message, the SF message

header is set, and the accumulated SF message is queued to the network. When a reply
ensues from CDBS, it is noted for diagnostic use, but no retry action is taken.

When one considers the larger picture, a SETDAT message sent to a front-end can elicit 3
messages from the front end. The first is the setting acknowledgment that is sent for any
SETDAT message sent as a request (REQ) rather than a USM. The second is the new SF
message described here. The third is an “accountability” record of the setting that is
logged to Acnet so that operations can have a record of all settings made to front-ends
to help assist in diagnosing strange behavior of accelerator devices.

The new implementation described here is to be installed in the system code, of course,
so that all front-end nodes will include it. It is not optional, except that it is prompted
only by SETDAT messages that include the dbflag set in the SETDAT header, so any node
that does not receive an Acnet SETDAT message will also not generate the SF message. A
front-end not installed in an Acnet installation will therefore not build SF messages.

More detail
The new logic is broken into several modules for ease in meshing it into the

existing logic in the ACReq task. During ACReq task initialization, a new task name
DBM... is opened for communication with CDBS. During nonserver processing of a
SETDAT message, in the routine SETNSERV, for each device that is local, the routine
SFSAMPLE is called to capture a copy of the current setting packet. (This allows for the
possibility that the setting packet is modified during execution of the setting.) After
successfully performing the setting for the current setting packet, the routine SFENTER is
called, which places a SF packet into the SF message buffer. After all SETDAT setting
packets have been processed, the routine SFQUEUE is called, which completes the SF
message header and queues the SF message to the network. When a reply is received in
response, the routine SFREPLY is called. All these routines are made to work together
via a new set of local variables added to the ACReq task. Some of the new variables
provide some internal diagnostics to assist during initial debugging as well as later on.

Post implementation
It turned out that the reply message actually has a 3-word header, consisting of a

value of 0xAA55, the number of SF packets, and the number of bytes of reply to be
generated, not counting the 3-word header. The reply packets that follow are 2 words
each, with the values 0x0210 and 0x0000. The first is a “DBM pending” status, since it
only means that the message was received; it has yet to be processed.

In order for the new feature to work, the front-end must be running the new system
code, of course. But it is also necessary for each Acnet device-property, for which the
forwarding feature is to be used, to have a flag set in the database. For alarm block
properties, this flag is always set.

Knob adjustment problem
For knob adjustments, which often result in a series of SETDAT messages sent at

15 Hz, there is a problem, because updating the Acnet database at 15 Hz may place a
strain on CDBS. Other front-ends are subject to the same problem, of course, but the
CAMAC front-ends only forward settings if the SETDAT messages are sent as a REQ (thus

Acnet Setting Forwarding p. 2

prompting a reply) rather than a USM. The parameter page, the usual knob control client,
sends a knob adjustment setting as a USM. Indeed, this serves to throttle the forwarding
messages to CDBS, but it would seem inadvisable, as who is to say that the last setting
made to a device was not made via a knob adjustment? Indeed, for some devices, knob
adjustments may be the way they are most often set. (Think of tuning a Linac quad
power supply according to the resulting effects on the beam.) One can easily end up
with CDBS setting values that do not match the current actual setting values. It seems
that another approach is needed.

Brian Hendricks suggested using a queue, emptied every few seconds, that holds SF
packets that are intended to be sent to CDBS. If a new entry is to be placed into the
queue, and there is already the same device represented therein, merely replace the
setting value already in the buffer rather than add a new entry to the queue.

Logic for communicating SF messages to CDBS is already in place. When a new SF
packet is appended to the buffer, let a counter be started to time out 5 seconds. If the
buffer is full, call NetQueue to “get it out the door,” and initialize a new empty buffer.
In separate logic, sensitive to 15 Hz, count down the counter. When it reaches zero,
empty the buffer by calling NetQueue. In this way, a flood of settings that fills the buffer
will be sent out promptly. But if only one device is being set via knob control, the single
entry is overwritten, until the time out transpires, and the buffer is shipped out.

One problem here is that time-sensitive logic cannot exist within the ACReq task, as it
waits on a message queue, and many seconds may pass between executions of the task.
One could send a special message through that queue to get ACReq to do the job of
emptying the buffer.

The ACReq task waits on a message queue via a call to NetCheck. After a return from
NetCheck, the message queue entry is examined. It can determine whether a special
message is there and invoke SFQUEUE. But how does logic outside ACReq do this
monitoring when it needs access to the SF variables within ACReq? We can simply post
a pointer to the most recent SF message block in low memory. Everything necessary can
be found within the block.

What about the buffer size that is allocated? Perhaps it should be a fixed size, rather
than one that depends upon all the local settings within a single SETDAT message. A size
of 512 bytes might be more than enough. Allowing 64 bytes for “infrastructure,” this
would allow for about 16 alarm blocks or about 40 ordinary 2-byte settings.

The periodic logic can be called from, say, the Update task, which always runs at 15 Hz.
It needs access to the SF message block, to which ACReq can set a pointer in low
memory. Within the message block, use a spare field to hold the timeout counter that
will be initialized to zero when the block is created.

The message block is not always present; it is only created when SFAPPEND calls
SFALLOC, which only happens when there is something to place in it. When SFQUEUE
passes the block to the network, the low memory pointer to it should be set to NULL.

Acnet Setting Forwarding p. 3

When a new entry is placed into the buffer (message block), the time out counter is
initialized to 75, for example, which corresponds to 5 seconds at 15 Hz. If no more
settings occur, the message block is queued to the network after 5 seconds. If repeated
settings occur to the same device-property, as specified by the PIDI field, each merely
updates the value in the buffer, but the timeout counter is not restarted. This means that
the queuing to the network of the buffer will not be impeded just because someone
continuously adjusts a device with a knob. The timeout counter should only be started
when the first entry is placed into a new buffer. This ensures that any entry placed in
the buffer will not wait longer than 5 seconds before it is delivered to CDBS. It also
means that under continuous knob control settings, a SF message will only be sent
every 5 seconds. The only time when it can be sent more often is when setting many
devices at nearly the same time, in which the buffer goes out every time it is filled.

The periodic logic is simple. It checks the low memory variable for being non-NULL and
therefore a pointer to a message block, in which case it decrements the counter field. If
the count reaches zero, it sends a special message to the message queue on which the
ACReq task awaits. To facilitate this, it can find this message queue id in another spare
field in the message block structure. Note that although this simple code might reside in
the ACReq module, it cannot access directly any of that task’s static variables, since it
runs as a part of the Update task. It only knows about the low memory pointer that is
set and cleared by ACReq. Let this simple routine be called SFCYCLE.

When SFQUEUE sends the message block to the network, it clears the low memory
pointer SETFBLK. Another block will only be created, and SETFBLK set to point to it,
when a new SF packet needs to be entered into a message buffer. Within 5 seconds, that
block will be sent to CDBS.

Replacement logic
Consider the replacement logic with some care. Scan the entries already in the

buffer for a match on the PIDI (property index-device index). But it is possible that the
length and/or offset do not match for the PIDI-matching entry. In that case, continue to
scan for a later full match that matches both the PIDI and the length and offset values.
Once a full match is found, replace the data. But if no full match is found, append the
new partial matching entry.

Another way to say it is that a replacement can be used instead of an append only when
there is a full match, and there is no further partial match later in the buffer. One could
consider scanning from the end looking for a partial match. Then, if that partial match is
not a full one, append must be used. But it is hard to scan through variable-size entries
from the end; it is only reasonable to scan from the beginning. So, scan for a full match
from the beginning. If one is found, continue the scan from that point for a later partial
match. Only if no later partial match is found, perform a data replacement; otherwise,
append the entry to the end.

Still there is a problem. Consider the following example of three settings. The first
setting is made to a single field within a 20-byte alarm block. Then a second setting is
made to the entire alarm block. Now a third setting is made to the same field that was
set in the first setting. Clearly, the third setting value should not replace the first setting

Acnet Setting Forwarding p. 4

value, since the second setting would overwrite it. The point is that we must be very
careful about re-ordering settings when it is possible to set parts of a structure. The
solution here is to look for the last full match in the buffer, and only if that match is not
followed by a partial match do we replace the data in the last full matching entry. If
either no full match was found at all, or if the last full match is followed by a partial
match, then we must append the new setting to the end of the buffer.

Modified plan of logic
At the start of SETNSERV, establish SETFDBF from the SETDAT message header. In

SETNSERV, for each setting packet that is local, call SFSAMPLE to save a copy of it and set
SETFDSZ to its data size if the dbflag in the SETDAT header is set and its size is suitable,
else zero. Then execute the setting. If there is no error detected, and if SETFDSZ is
nonzero, call SFENTER to add it to the buffer for reporting to CDBS.

In SFSAMPLE, if the dbflag in the SETDAT header is set, and if the current setting packet
has 1–20 bytes of data, the current setting packet is copied into a sample buffer, which
consists of SETFSAMP, SETFSAML, and SETSAMD. Then SETFDSZ is set to the size of the
setting data, else 0.

In SFENTER, check the low memory pointer SETFBLK. If it is NULL, call SFALLOC to
allocate a fixed-size SF message block. Now, if the pointer SETFBLK is non-NULL, scan
through each SF packet already included, looking for the last packet matching both the
PIDI and the length and offset. If one is not found, or if a further scan from that last
matching entry finds a partial (PIDI-only) match, call SFAPPEND to add the new entry to
the end. But if a full match was found, and no later partial match was found, replace the
setting data in the last full matching entry with the setting data from the new packet.

In SFAPPEND, check that there is room in the fixed size buffer for the new entry. If there
is not room, call SFQUEUE to queue the message block to the network, then call SFALLOC
to create a new empty buffer. Now, if there is room for the new entry to fit, do the
actual append step to copy from the sampled buffer, advance the message block MSGLEN
field accordingly, and increment SETFWDN.

In SFQUEUE, check the low memory SETFBLK to be sure a message block exists, then call
NetQueue to queue it for network transmission. Clear SETFBLK, SETFWDP, and SETFWDN.

In SAALLOC, allocate a fixed size message block of, say, 512 bytes, and store its address
in SETFBLK and SETFWDP and clear SETFWDN. Initialize the message block, including
setting the SETFTOC timeout counter field to 75, say, to provide for a 5 second timeout.
Copy ACRQXID to the SETFQID field., to be used by SFCYCLE to wake up the ACReq task.

In SFCYCLE, which is invoked by the Update task every 15 Hz cycle, check that SETFBLK
is non-NULL, and if it is, check the SETFTOC timeout counter field. If the counter is zero,
send a special message to the message queue by using the SETFQID field; otherwise,
merely decrement the counter.

In ACReq, calling NetCheck, call SFQUEUE if the special message is found.

Acnet Setting Forwarding p. 5

